Rappels d'analyse 2018-2019

Exercice 1. On considère la suite déterminée par la donnée de $u_0 \in \mathbb{R}_+$ et la relation de récurrence : $\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + u_n)$.

- 1. Écrire un programme python pour conjecturer la convergence de la suite (u_n) .
- 2. Étudier la fonction $x \mapsto \ln(1+x) x$. Quel est son signe ?
- 3. Quelles sont les limites possibles de la suite (u_n) ?
- 4. Étudier la convergence de la suite (u_n) .
- 5. En déduire l'ensemble des fonctions h continues sur \mathbb{R}_+ telles que : pour tout $x \in \mathbb{R}_+$, $h(x) = h(\ln(1+x))$.

```
def Suite(n,u):
    U=[u]
    for k in range(n):
        u=log(1+u)
        U.append(u)
    return U
```

```
from math import log
import matplotlib.pyplot as plt

n,u=100,5
U=Suite(n,u)
plt.plot(U) ; plt.show()
```

Exercice 2. On étudie l'évolution d'une population de cerfs : on note x_0 l'effectif initial et x_n l'effectif de l'année n. On suppose que pour tout $n \in \mathbb{N}$, $x_{n+1} = x_n \exp\left(\mu(1-\frac{x_n}{K})\right)$ où $0 < \mu < 1$ est le taux de croissance et K > 0 la capacité du milieu.

On définit la fonction f sur \mathbb{R}^+ par : $\forall x \ge 0$, $f(x) = xe^{\mu\left(1 - \frac{x}{K}\right)}$.

- 1. Écrire une fonction X d'arguments n, x_0 , K et μ qui renvoie la liste $[x_0, ..., x_n]$. Tester pour X(15,100,1000,0.5).
 - (a) Montrer qu'il existe deux solutions positives ou nulles de l'équation : f(x) = x que l'on note α et β
 Que peut-on dire de la suite si x₀ = α ou x₀ = β? Que représentent α et β pour la population de cerfs?
 - (b) Donner le tableau de variation de *f*
- 2. On suppose que $x_0 \in [0, K]$.
 - (a) Exécuter le programme pour différentes valeurs de x_0 et de μ . Que peut-on conjecturer sur la variation de (x_n) et sa convergence ?
 - (b) Montrer que $\forall n \in \mathbb{N}, x_n \in [0, K]$.
 - (c) Déterminer le sens de variation de (x_n) . Est-elle convergente ? Si oui, quelle est sa limite ?
- 3. On suppose que $x_0 \in K, K/\mu$.
 - (a) Exécuter le programme pour différentes valeurs de x_0 et de μ .
 - (b) Que peut-on conjecturer sur la variation de (x_n) et sa convergence ?
 - (c) Déterminer le sens de variation de (x_n) . Est-elle convergente? Si oui, quelle est sa limite ?
- 4. On suppose que $x_0 > K/\mu$.

- (a) Montrer qu'il existe $\delta \in [0, K/\mu]$ tel que $f(\delta) = f(x_0)$.
- (b) Écrire un programme qui donne une valeur approchée de δ .

```
def f(x): return x*exp(mu*(1-x/K))

def SuiteX(n,x,K,mu):
    X=[x]
    for j in range(n):
        x=f(x)
        X.append(x)
    return X

def dicho(eps,x,K,mu):
    a=0 ; b=K/mu
    while b-a>eps:
        c=(a+b)/2
        if f(c)<f(x): a=c
        else: b=c
    return c</pre>
```

```
from math import exp
import matplotlib.pyplot as plt

n,x,K,mu=10,100,1000,0.5
plt.plot(SuiteX(n,x,K,mu)) ; plt.show()

x,K,mu=4500,1000,0.8 ; print(K/mu)
c=dicho(0.001,x,K,mu)
print(c,f(c),f(x))
plt.plot(SuiteX(n,x,K,mu)) ; plt.show()
```

Exercice 3. Soit f la fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = 1 - \frac{x^2}{2} + \frac{x^3}{6}$.

- 1. Écrire un programme Python permettant l'affichage de la courbe de la fonction f sur [-3,5] et de la première bissectrice (y = x) sur un même graphique. Dresser le tableau de variation de la fonction f.
- 2. Soit $a \in [0,1]$. On considère la suite (u_n) définie par $u_0 = a$ et par la relation de récurrence : $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

Avec un programme en Python, faire afficher les premières valeurs de cette suite pour différentes valeurs de a. Que peut-on conjecturer sur le comportement de la suite (u_n) ?

- 3. On considère la fonction g définie sur \mathbb{R} par : g(x) = f(x) x. Montrer que l'équation g(x) = 0 admet sur [0,1] une unique solution que l'on notera α .
- 4. Montrer que tous les termes de la suite (u_n) sont dans l'intervalle [0,1].

Déterminer un réel M vérifiant 0 < M < 1, et tel que : $\forall x \in [0,1], |f'(x)| \le M$.

A l'aide du théorème des accroissements finis démontrer : $\forall n \in \mathbb{N}, |u_{n+1} - \alpha| \leq M|u_n - \alpha|$.

En déduire : $\forall n \in \mathbb{N}$, $|u_n - \alpha| \leq M^n$. Quelle conclusion peut-on en tirer ?

5. A l'aide des questions précédentes, écrire un programme en Python permettant le calcul d'une valeur approchée de α à eps près, où eps est un paramètre strictement positif.

```
      def f(x): return 1-x**2/2+x**3/6

      def CalculU(a,n):

      U=[a]

      for k in range(n):

      a=f(a)

      U.append(a)

      return U

      def ApproxAlpha(eps):

      M=1/2

      a=0.5

      while M>eps:

      a=f(a)

      M=M/2

      return a
```

```
import matplotlib.pyplot as plt

X=[-3+j/10 for j in range(80)]

Y=[f(x) for x in X]

plt.figure(1)

plt.plot(X,X)

plt.plot(X,Y); plt.show()

plt.figure(2)

U=CalculU(0.4,10)

plt.plot(U); plt.show()

alpha=ApproxAlpha(0.001)

print(alpha, f(alpha))
```

Exercice 4. On définit une fonction f_n sur \mathbb{R} avec n appartenant à $\mathbb{N} \setminus 0$ par : $f_n(x) = \frac{1}{1 + e^x} + nx$

- 1. (a) Calculer $f'_n(x)$ et $f''_n(x)$. Montrer que f_n est strictement croissante.
 - (b) Montrez qu'il existe un unique réel noté u_n tel que $f_n(u_n) = 0$. Montrer que $-\frac{1}{n} \le u_n \le 0$.
- 2. (a) Complétez la fonction suivante pour avoir u_n à eps près :

```
def f(n,x):
return 1/(1+exp(x))+n*x
```

- (b) Grâce à un programme informatique (utilisant notamment celui de la question précédente) prévoir les variations de (u_n) .
- 3. Comparer $f_n(x)$ et $f_{n+1}(x)$. Quel est le signe de $f_{n+1}(u_n)$? En déduire les variations de la suite (u_n) .
- 4. Montrez que u_n est équivalent en $+\infty$ à $-\frac{1}{2n}$. Trouvez un équivalent de $\frac{1}{2}+nu_n$ en $+\infty$.

Exercice 5. Soit $n \in \mathbb{N}^*$. On pose $\forall x \in \mathbb{R}_+$, $f_n(x) = x^n + x^{n-1} + \dots + x^2 + x - 1$.

- 1. Montrer que l'équation $f_n(x) = 0$ admet une unique solution sur \mathbb{R}_+^* que l'on notera a_n .
- 2. Tracer les courbes représentatives de f_1 , f_2 , f_3 , f_4 sur [0,1]. Quelles conjectures peut-on faire sur la monotonie de la suite (a_n) et sa convergence ?
- 3. Déterminer le signe de $f_{n+1}(a_n)$. En déduire la monotonie de la suite (a_n) .
- 4. Montrer que la suite (a_n) converge vers ℓ tel que $\frac{1}{1-\ell}-2=0$. en déduire ℓ .

```
def fonc(n,x):
    y=0
    for k in range(1,n+1):
        y=y+x**n
    return y-2
```

```
import matplotlib.pyplot as plt

X=[j/20 for j in range(20)]
for n in range(1,5):
    Y=[fonc(n,x) for x in X]
    plt.plot(X,Y)
plt.show()
```

Exercice 6. Pour tout entier
$$n > 0$$
 on pose $u_n = \sum_{k=n}^{2n} \frac{1}{k}$ et $v_n = \sum_{k=n}^{2n} \left(\operatorname{Arctan} \frac{1}{\sqrt{k}} \right)^2$

- 1. Écrire une fonction python pour représenter graphiquement e^{u_n} et e^{v_n} pour n compris entre 1 et 1000.
- 2. Montrer que la suite (u_n) est monotone et convergente.
- 3. Montrer que $\forall x \in \mathbb{R}_+$, $\operatorname{arctan}(x) \leq x$. En déduire que $\forall n \in \mathbb{N}^*$, $v_n \leq u_n$.
- 4. À l'aide du théorème des accroissements finis montrer que $\arctan\left(\frac{1}{\sqrt{n}}\right) \ge \frac{\sqrt{n}}{n+1}$.

En déduire que $u_n - v_n \le \frac{1}{n} \sum_{k=n}^{2n} \frac{2k+1}{(k+1)^2}$ puis qu'il existe une constante C > 0 telle que :

$$0 \le u_n - v_n \le \frac{C}{n}.$$

5. La suite (v_n) converge-t-elle ? Si oui déterminer sa limite.

```
def Representeuv(n):
    U=[] ; u=0 ; V=[] ; v=0
    for k in range(1,n):
        u+=1/(2*k-1)+1/(2*k)-1/k
        v+=atan(1/sqrt(2*k-1))**2+atan(1/sqrt(2*k))**2-atan(1/sqrt(k))**2
        U.append(exp(u))
        V.append(exp(v))
    plt.plot(U)
    plt.plot(V)
    plt.show()

import matplotlib.pyplot as plt
from math import atan, sqrt, exp
Representeuv(100)
```

Exercice 7. Soit t un réel positif ou nul. Pour tout réel x, on pose : $P_t(x) = x^3 + tx - 1$.

- 1. Démontrer que le polynôme P_t admet une unique racine réelle que l'on notera u(t).
- 2. On note u l'application définie sur \mathbb{R}_+ qui, à tout réel positif t, associe le réel u(t).
 - (a) Montrer que $u(\mathbb{R}_+) \subset]0,1]$
 - (b) Montrer que la fonction u est strictement décroissante sur \mathbb{R}_+ .
 - (c) Déterminer la limite de u en $+\infty$. (Utiliser l'expression de $P_t(u(t))$).
 - (d) Montrer que l'application u est bijective de \mathbb{R}_+ vers]0,1] de réciproque :

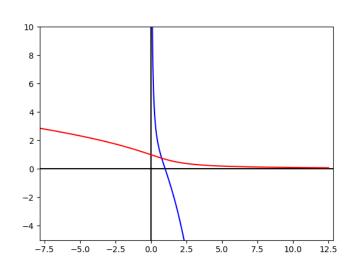
$$\nu:]0,1] \to \mathbb{R}_+, \quad y \mapsto \frac{1-y^3}{y}.$$

- (e) Représenter graphiquement grâce au langage Python la fonction v sur]0,1]. En déduire le tracé de représentation graphique de la fonction u.
- (f) Justifier que la fonction u est continue sur \mathbb{R}_+ .
- (g) Démontrer que la fonction u est dérivable sur \mathbb{R}_+ puis déterminer l'expression de u'(t) en fonction de u(t).

```
import matplotlib.pyplot as plt

plt.axis('equal')
plt.axis([-5,10,-5,10])
plt.axhline(color='k') # axe des x
plt.axvline(color='k') # axe des y

Y=[j/50 for j in range(4,204)]
X=[1/y-y**2 for y in Y]
plt.plot(Y,X,color='b')
plt.plot(X,Y,color='r')
plt.show()
```



Exercice 8. Soit n un entier naturel non nul et x_1, \ldots, x_n n réels de l'intervalle]0,1[. On définit les quantités suivantes :

$$A_n = \frac{1}{n} \sum_{k=1}^n x_k, \quad \overline{A}_n = \frac{1}{n} \sum_{k=1}^n (1 - x_k), \quad G_n = \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}}, \quad \overline{G}_n = \left(\prod_{k=1}^n (1 - x_k)\right)^{\frac{1}{n}}$$

- 1. Calculer A_2 et G_2 . Montrer l'égalité suivante : $\sqrt{1-2A_2+G_2^2}=\overline{G}_2$.
- 2. Montrer que $G_2 \leq A_2$.
- 3. Écrire une fonction Python qui calcule et renvoie les deux quotients : $\frac{G_n}{A_n}$ et $\frac{\overline{G}_n}{\overline{A}_n}$.
- 4. Soit f une fonction définie sur $\left]0,\frac{1}{2}\right]$, deux fois dérivable sur cet intervalle et vérifiant $f'' \ge 0$.

(a) Soit $a \in \left[0, \frac{1}{2}\right]$. Montrer l'inégalité suivante :

$$\forall t \in \left[0, \frac{1}{2}\right], \quad f(t) \geqslant f(a) + (t - a)f'(a)$$

- (b) On définit f par $\forall t \in \left[0, \frac{1}{2}\right]$, $f(t) = \ln \frac{1-t}{t}$. Montrer que f vérifie les hypothèses du a).
- (c) On suppose que $\forall k \in [1, n], x_k \in \left[0, \frac{1}{2}\right]$. Montrer que $\ln(\overline{G_n}) \ln(G_n) \ge 2(\overline{A_n} A_n)$

Exercice 9. Soit f l'application de $]-1,+\infty[$ dans \mathbb{R} définie par $f(x)=x^2+\ln(x+1)$.

- 1. Montrer que f est bijective. On note φ son inverse. Dresser le tableau de variations de φ .
- 2. Montrer que φ est dérivable sur $\mathbb R$. Trouver le développement limité de φ à l'ordre 2 en 0.
- 3. Calculer $\lim_{t \to +\infty} \frac{\varphi(t)}{\sqrt{t}}$ et $\lim_{t \to +\infty} (\varphi(t) \sqrt{t})$.

Donner l'allure de la courbe représentative de φ et tracer avec Python.

def fon
$$(x)$$
: **return** $x**2+log(x+1)$

import matplotlib.pyplot as plt
from math import log

$$X=[-1+j/20 \text{ for } j \text{ in range}(1,100)]$$

 $Y=[fon(x) \text{ for } x \text{ in } X]$
 $plt.plot(X,Y)$
 $plt.plot(Y,X)$

plt.show()

Exercice 10. Calculer
$$\lim_{x\to 0} \frac{e-(1+x)^{\frac{1}{x}}}{x}$$
.

Exercice 11. Trouver un équivalent en ∞ de $x^2 \ln \left(2 + \frac{1}{x}\right) - ax^2 - bx - c$.